CM Desert Scientific Software

# An Exploration of Network Hotspots and Cooperativity in Protein-Ligand Recognition

**Neil R. Taylor**, Desert Scientific Software, Sydney, Australia

A joint venture between Desert Scientific Software and F. Hoffmann-La Roche

# Ligand binding typically understood as the sum of protein-ligand interactions



#### Additional interactions lead to tighter binding

... not that simple

# Beyond the pairwise additive view of protein-ligand interactions





Additional interactions lead to additional *network paths* which can further stabilise the protein-ligand complex

... propose additional network paths lead to tighter binding

# New concept: protein-ligand complex modelled as a small world network (SWN)



Addition of an extra node and just a few extra edges can reduce shortest path lengths between many pairs of nodes

We use network approach to capture cooperativity in proteinligand complexes

### **Types of cooperativity**



Correlated H-bonds have lower free energy than sum of individual hydrogen bonds due to mutual polarization

## Types of cooperativity (cont)



#### A hydrogen bond reinforces lipophilic interactions in the complex

Baum et. al., J. Mol. Biol., 2010, 397, 1042

# Types of cooperativity (cont)



The binding of biotin to streptavidin is 1000 times stronger than sum of the parts

" very large ligand binding energies ... derived by decreasing the lengths of numerous hydogen bonds of a protein (upon binding a small molecule) by as little as about 1%"

Williams et. al., Angew. Chem. Int. Ed, 2004, 43, 6596

### **Overview of approach: Scorpion**

- Identification and classification of different types of favourable and unfavourable close contacts within protein-ligand binding sites
- Combine all covalent and all favourable non-covalent interactions into a single network

• Encode network paths containing ligand atoms into subgraph network descriptors

• Define a reduced graph representation of protein structure

• Parametrise using genetic algorithm based on high quality data sets

# Network edges: indentifcation of favourable and unfavourable interactions using ViewContacts

Implement a broader view of non-covalent interactions

- 1. hydrogen bond
- 2. metal
- 3. ionic
- 4. cation-dipole
- 5. cation-pi
- 6. dipolar
- 7.  $\sigma$ -hole bond

- 8. h\_donor-pi
- 9. pi-pi
- 10. vdW

11. unfavorable of 1, 2, 3, 612. polar and non-polar clashes13. polar-nonpolar contacts with likely desolvation penalties

### **ViewContacts: example**



CM Desert Scientific Software

### ViewContacts: handling of water molecules

Score explicit water molecules based on deviation from ideal tetrahedral coordination of protein-bound water molecules

$$Rank = \sum_{n} \left\{ \left( 2.80A / r_{n} \right) + \left[ \sum_{m} \cos \left( \Theta_{Td} - \Theta_{nm} \right) \right] / 6 \right\}$$

Amadasi et. al., J. Med. Chem., 2008, 51, 1063

Ex. 2r8q (PDE-B1)



#### Water molecules with Rank scores ≥ 2.0 are included in networks

# ViewContacts: identification of unfavourable interactions

Unfavourable contact if an apolar ligand atom replaced by water molecule fulfills hydrogen bonding requirements





No hydrogen bond partner for this buried N atom in the binding site  $\rightarrow$  an unfavourable interaction

Allows for the detection of desolvation penalties that negatively affect target binding

# Standard small world network (SWN) model

Initially explored using descriptors from Social Network Analysis



Kite Network, by D. Krackhardt

http://www.orgnet.com/sna.html

In our domain, these descriptors are too sensitive to individual contacts, and to geometric constraints associated with maximum number of contacts

# Network descriptors: paths involving ligand atoms

- ligand-protein-ligand (LPL) network elements
  - ligcycles (involving 1 ligand atom) ligloops (involving ≥ 2 ligand atoms)





examples from 1nnc

- ligand-protein-protein (LPP) network elements
  - ligpaths (subsets of long ligcycles/ligloops > 8)



# Network descriptors: special treatment of hydrogen bonding

- privileged pairs of hydrogen bonds
  - arrangements of hydrogen bonds that can not be achieved in the apo state



- protein-ligand-protein (PLP)
  - with lower free energy than the sum of the individual bonds due to mutual polarization



# Network descriptors: nodes based on a reduced graph definition of protein structure

Protein structure is treated as a collection of small groups of atoms (functional groups)



## Stringent quality criteria for training sets

- X-ray structure with crystallographic resolution  $\leq$  2.5 Å
- successful match of ligand topology (best Proasis ligand quality)
- noncovalent binding between ligand and protein
- no symmetry contacts
- no alternative conformations
- no clashes
- no missing atoms
- no broken residues
- minimum occupancy = 1.0
- minimum real space correlation coefficient  $\ge 0.7$
- ligand strain energy ≤ 8 kcal/mol
- drug/lead-like ligands
- binding data available (K $_{\rm i},\, {\rm K}_{\rm d},\, {\rm IC}_{\rm 50})$  and measured with same assay



Electon density correlation coefficient is a better measure of model quality than B-factors

# Training sets: high quality structures with binding affinity data

I) hard set: 28 compounds:

activity cliff pairs

|  | 4 | protein tyrosine                |       | -OH  | 2h4g  | 6.5 |
|--|---|---------------------------------|-------|------|-------|-----|
|  |   | phosphatase 1B                  | o + s | -H   | 2h4k  | 5.5 |
|  | 5 | tma-guanine<br>transglycosylase |       | -NH2 | 2z7k  | 7.1 |
|  |   |                                 |       | -CH3 | 3c2y  | 5.8 |
|  | 6 | hsp90                           |       | -OH  | 2xab  | 9.3 |
|  |   |                                 |       | -H   | model | 7.2 |

II) 31 neuraminidase complexes

III) 46 PDE10 complexes

IV) 7 subsets with up to 10 structures each:

IRAK4, BTK, HCV polymerase, HIV protease, DPP-4, PKACA, LCK

### **Global optimisation**

• based on high quality structures and results from docking

- optimisation used genetic algorithm approach
- form of scoring function:

$$S = \sum_{n} f(Int) \quad \text{(without network terms)}$$
$$S_{Scorpion} = \sum_{n} f(Int) + \sum_{m} g(Int \_ nw)$$

• a particular protein-ligand interaction considered networked if [weighted] sum of network elements higher than an interaction-specific threshold

CME Desert Scientific Software

# Activity cliffs: predicted vs. experimental energy differences



## **Activity cliffs: Neuraminidase example**



1nnb IC50: 5uM S<sub>Scorpion</sub>: 6.4+2.2



1nnc IC50: 1nM S<sub>Scorpion</sub>: 8.1+4.2



#### **Scorpion Score**

 $S_{scorpion} = 0.473 \text{ x [hbond]} + 0.129 \text{ x [hbond_nw]} + 0.516 \text{ x [vdw]} + 0.387 \text{ x [vdw_nw]} + 0.188 \text{ x [pi-pi]} + 0.931 \text{ x [pi-pi_nw]} + 0.285 \text{ x [cat - dipole]} + 0.606 \text{ x [cat - pi]} + 0.65 \text{ x [halogen]} - 0.387 \text{ x [unf_hbond]} - 0.899 \text{ x [unf_desolv]} - 1.146 \text{ x [unf_clash]} - 1.501 \text{ x [unf_ionic]}$ 

Results shown from optimisation done back in 2010

- scoring function optimisation is on-going, we continue to improve our results

## **Quick and easy visualisation**

| Proasis3                                                         |                                                                                    |                                                                                               |               |                  |           |                                                                 |                                                                                               |                                          |  |  |  |  |  |
|------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------|------------------|-----------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------|--|--|--|--|--|
| Search HitList St                                                | rucE                                                                               | Details (                                                                                     | Dverlay       | SaveHitList View | vContacts | TreeView Settin                                                 | ngs DataBase Help                                                                             |                                          |  |  |  |  |  |
| Search Protein Structure Database                                |                                                                                    |                                                                                               |               |                  |           |                                                                 |                                                                                               |                                          |  |  |  |  |  |
| PROASIS<br>3                                                     |                                                                                    |                                                                                               |               |                  | •         |                                                                 |                                                                                               |                                          |  |  |  |  |  |
| Project, ID, 1                                                   | Fext                                                                               | or Seq                                                                                        | luence        | Search           |           | Ligand Struct                                                   | ure Search                                                                                    |                                          |  |  |  |  |  |
| Neuraminidase                                                    | Neuraminidase                                                                      |                                                                                               |               |                  |           |                                                                 |                                                                                               |                                          |  |  |  |  |  |
| Enter project name(s), j                                         | Enter project name(s), protein or ligand ID(s), text string, or a protein sequence |                                                                                               |               |                  |           |                                                                 | Enter SMARTS (or SMILES) string                                                               |                                          |  |  |  |  |  |
| Project Lookup ID Lookup Text Search Seq Search Structure Search |                                                                                    |                                                                                               |               |                  |           |                                                                 |                                                                                               |                                          |  |  |  |  |  |
| Recent Submissions Search Click here to show molecular sketcher  |                                                                                    |                                                                                               |               |                  |           |                                                                 |                                                                                               |                                          |  |  |  |  |  |
|                                                                  | Pro                                                                                | asis3                                                                                         |               |                  |           |                                                                 |                                                                                               |                                          |  |  |  |  |  |
| Enter number of da                                               | 9                                                                                  | Saarah Hiti int StrucDataila Ovadov SavaHiti int ViewCantacta TracView Sattings DataBase Hale |               |                  |           |                                                                 |                                                                                               |                                          |  |  |  |  |  |
| Recent Sea                                                       | <u> </u>                                                                           |                                                                                               |               |                  |           |                                                                 |                                                                                               |                                          |  |  |  |  |  |
| Click boro to b                                                  | S                                                                                  | how HitList                                                                                   |               |                  |           |                                                                 |                                                                                               |                                          |  |  |  |  |  |
| Click here to h                                                  |                                                                                    | First  Prev page 1 of 19 (92 hits, 92 strucs) Next > Last >> Sort by: LIGANDSIZE  Help: ()    |               |                  |           |                                                                 |                                                                                               |                                          |  |  |  |  |  |
|                                                                  |                                                                                    | Strucid                                                                                       | Ligand        |                  | RegNo     | Title                                                           |                                                                                               | Links                                    |  |  |  |  |  |
|                                                                  | 1                                                                                  | 309k                                                                                          | $\rightarrow$ | }<br>}           |           | INFLUENZA NA IN COM                                             | IPLEX WITH COMPOUND 6                                                                         | <u>Site</u><br><u>Header</u><br>DownLoad |  |  |  |  |  |
| <b>└→</b>                                                        | 2                                                                                  | 1bji                                                                                          | <i>H</i>      |                  |           | THE X-RAY STRUCTUR<br>VIRUS NEURAMINIDAS<br>6-CARBOXAMIDE SIALI | RE OF A COMPLEX OF TERN N9 INFLUEN;<br>E COMPLEXED WITH THE GLAXO<br>C ACID ANALOGUE GR217029 | ZA <u>Site</u><br>Header<br>DownLoad     |  |  |  |  |  |
|                                                                  |                                                                                    |                                                                                               |               |                  |           |                                                                 |                                                                                               |                                          |  |  |  |  |  |



... at the click of a button

### Score contributions mapped onto atoms





color ramp from blue -> red gray = no score contribution

CME Desert Scientific Software

#### Aurora A kinase inhibitors

CF<sub>3</sub>

networked H-bonds with high score incl. network contribution





#### Aurora A kinase inhibitors (cont.)



#### Aurora A kinase inhibitors (cont.)

more privileged H-bond pairs





#### Aurora A kinase inhibitors (cont.)



tightly bound waters play important role in networks



### **Examples of highly networked atoms**

Atoms in buried pockets with several contacts receive extra network contribution



other examples: 1ql7 (trypsin): Cl in S1 pocket 2j4i (FXa): Cl in S1 pocket 2r3r (cdk2): Br





### Insulin receptor kinase – pyrrolopyridine complex

Ligand atoms can have high network scores in spite of being highly solvent-exposed



-aminomethyl group solvent exposed with no direct contact with protein

- amino group interacts through proteinbound water molecules with insulin receptor resulting in a high score despite low buriedness



3eta

#### **Streptavidin - biotin**

- femtomolar binding affinity, not explainable with standard methods
- experimental evidence for tighter packing in complex reduced H/D exchange
- high Scorpion scores for S (4.9), adjacent C (2.1) and carbonyl O (1.7) atoms, unusually high network contribution for S atom (3.4)





"The streptavidin/biotin system provides a clear example where the binding affinity is the propertry of the whole system"

Williams et. al., Angew. Chem. Int. Ed, 2004, 43, 6596

## **Cooperativity pairs - DPP4**

steep and non-additive SAR in DPP-4:





expected for combination: 500-fold



Circled atoms identified as potential cooperativity partners [A,B] - high networkedness of A and B with protein and LPL link from A to B.

### Acknowledgements

- Bernd Kuhn\*
- Martin Stahl
- Michael Reutlinger for support with generation of the high-quality data sets
- Julian Fuchs for support with genetic algorithm optimisation
- Wolfgang Guba, and other molecular modeling staff from Roche, Basel, for help testing software
- Annabelle Taylor for many fruitful discussions